Task 5: Classificazione sismica dei siti ITACA

Responsabili task: L. Luzi (INGV-MIPV), M. Mucciarelli (UNIBAS), D. Albarello (UNISI)

Aims of the task

- Revise the classification of the sites of the Italian strong-motion stations according to the classes of the Eurocode 8 and the Italian seismic codes
- Provide the database end-user parameters also obtained with low cost methods, suitable for alternative site classification techniques
- Classification of rock sites

Working steps

- 1. Carry out the state of the art on soil classification
- 2. Collect a set of well documented recording station
- 3. Establish classification schemes alternative to the proposed standard
- 4. Test soil classification through error distribution in GMPE

State of the work

- Revised classification of the sites of the Italian strong motion stations, based on the information coming from Task 2, according to the Italian and EC8 seismic norms (NEEDS TASK2 RESULTS);
- 2. Critical review of the methods proposed in the literature for improve site classification, and check of their applicability using the Italian data set (ONGOING)
- Selection of a set of parameters suitable for site response characterization, obtainable either by low cost geophysical investigations or by spectral techniques (ONGOING)
- 4. Examples of classification of well characterized recording sites according to the previous criteria and parameters, and possible introduction of a new classification scheme (ONGOING)

State of the work (2)

- 5. Test of the site classification schemes through the estimation of the standard deviation of empirical ground motion models (ONGOING)
- 6. Interaction with Task 3 to identify the experimental procedures suitable to calibrate the previous parameters with low cost procedures (FUTURE)
- 7. Investigation of rock or very stiff soil sites, to enlarge the set of Class A velocity profiles, and to propose possible sub-divisions of Class A sites into sub-classes (ONGOING)
- 8. Identification in the database, of outcropping bedrock sites suitable as reference sites for seismic hazard studies (NEEDS TASK4 RESULTS)
- Verification of simplified classification criteria based on the information available from geology maps (FUTURE)

1. State of the art

- Collect published papers on site classification and International and Italian seismic codes (DONE 80%)
- Carry out the state-of-the-art in site classification with special emphasis on the parameters used to discriminate among soil classes (ONGOING)

State of the art (about 30 papers collected)

Anderson J. G., Lee Y, Zeng Y., Day S. (1996). Control of strong motion by the upper 30 meters. . Bull. Seism. Soc. Am., 86, n. 6, 1749-1759 Barani S., De Ferrari R., Ferretti G., Eva C. (2008) Assessing the Effectiveness of Soil Parameters for Ground Response Characterization and Soil Classification. Earthquake Spectra, 24, No. 3, 565–597.

Borcherdt R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra, 10, 617-653.

Borcherdt R. D. (2002) Empirical Evidence for Site Coefficients in Building Code Provisions. Earthquake Spectra, 18, No. 2, 189–217.

Borcherdt R. D. Glassmoyer G. (1992) On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in th San Francisco Bay region, California. Bull. Seism. Soc. Am., 82, n.2, 603-641

Choi Y., Stewart J.P. (2005) Nonlinear Site Amplification as Function of 30 m Shear Wave Velocity. Earthquake Spectra, 21, No. 1, 1–30

Dobry R., Borcherdt R. D., Crouse C. B., Idriss I. M., Joyner W. B., Martin G. R., Power M. S., Rinne E. E., Seed R. B. (2000) New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra, 16, n. 1, 41-67.

Field E. H. (2000) A Modified Ground-Motion Attenuation Relationship for Southern California that Accounts for Detailed Site Classification and a Basin-Depth Effect. Bull. Seism. Soc. Am. 90, 6B, S209–S221

Fukushima Y., Bonilla L. B.; Scotti O.; Douglas J. Site Classification Using Horizontal-to-vertical Response Spectral Ratios and its Impact when Deriving Empirical Ground-motion Prediction Equations. Journal of Earthquake Engineering, 11:5, 712 - 724

Ghasemi H., Zare M., Fukushima Y, Sinaeian F. (2008) Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dynamics and Earthquake Engineering

Lee C.T., Cheng C.T., Liao C.W., Tsai Y.B. (2001). Site Classification of Taiwan Free-Field Strong-Motion Stations. Bull. Seism. Soc. Am., 91, 5, 1283–1297

Lee Y., Anderson J. G. (2000). Potential for Improving Ground-Motion Relations in Southern California by Incorporating Various Site Parameters. Bull. Seism. Soc. Am. 90, 6B, S170–S186.

Mucciarelli M., Gallipoli M.R. (2006) Comparison between vs30 and other estimates of site amplification in italy. Proceeding of the First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE & 30th General Assembly of the ESC) Geneva, Switzerland, 3-8 September 2006

.....

1997 NEHRP provisions and 1997 UBC

Soil profile type	Description	Shear wave velocity top 30 m (m/s)	Standard Pen. Resistance N (blows/ft)	Undrained shear strength (kPa)
А	Hard rock	> 1500	-	-
В	Rock	760-1500	-	-
С	Very dense soil/ soft rock	360-760	> 50	> 100
D	Stiff soil	180-360	15 - 50	50 - 100
Е	Soft soil	< 180	< 15	< 50
F	Special soils requiring site- specific evaluation	-	-	-

This classification is based on Borcherdt (1994) site amplification factors evaluated primarily on observations from the 1989 Loma Prieta earthquake, which showed significant nonlinear site response effects

EC8

Subsoil class	Description of stratigraphic profile	Parameters		
		V _{s,30} (m/ s)	N_{SPT} (bl/30cm)	c_u (kPa)
А	Rock or other rock-like geological formation, including at most 5m of weaker material at the surface	> 800	_	_
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of m in thickness, characterised by a gradual increase of mechanical properties with depth	360 – 800	> 50	> 250
С	Deep deposits of dense or medium-dense sand, gravel or stiff clay with thickness from several tens to many hundreds of m	180 – 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil	< 180	< 15	< 70
E	A soil profile consisting of a surface alluvium layer with $V_{s,30}$ values of class C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $V_{s,30} > 800$ m/s			
S ₁	Deposits consisting – or containing a layer at least 10 m thick – of soft clays/silts with high plasticity index (PI > 40) and high water content	< 100 (indicati ve)	_	10-20
S ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in classes A –E or S_1			

Japan Road Association (1980, 1990)

Subsoil class	Description of stratigraphic profile	Parameters	
		$V_{s,30} ({ m m/s})$	$T_0(s)$
SC I	Rock or stiff soil	> 600	< 0.2
SC II	Hard soil	300 - 600	0.2 - 0.4
SC III	Medium soil	200 - 300	0.4 - 0.6
SC IV	Soft soil	< 200	> 0.6

Bray and Rodriguez Marek (1997)

Site	Description	Site	Comments	
		Period		
Α	Hard Rock	≤0.1 s	Hard, strong, intact rock; $V_s \ge 1500$ m/s	
B	Rock	≤ 0.2 s	Most "unweathered" California rock cases	
			$(V_s \ge 760 \text{ m/s or } < 6 \text{ m of soil}).$	
C -1	Weathered/Soft Rock	≤ 0.4 s	Weathered zone > 6 m and < 30 m (V_s > 360 m/s increasing to > 700 m/s).	
-2	Shallow Stiff Soil	≤ 0.5 s	Soil depth > 6 m and < 30 m	
-3	Intermediate Depth Stiff	≤ 0.8 s	Soil depth $> 30 \text{ m}$ and $< 60 \text{ m}$	
D 1	Soll			
D-1	Deep Stiff Holocene Soil,	≤ 1.4 s	Soli depth > 60 m and < 200 m. Sand has	
ļ	either S (Sand) or C		low times content (< 15%) or nonplastic	
	(Clay)		tines (PI < 5). Clay has high tines content	
			(> 15%) and plastic fines $(PI > 5)$.	
-2	Deep Stiff Pleistocene	≤ 1.4 s	Soil depth > 60 m and < 200 m. See D_1 for	
	Soil, S (Sand) or C (Clay)		S or C sub-categorization.	
-3	Very Deep Stiff Soil	≤ 2 s	Soil depth > 200 m.	
E -1	Medium Depth Soft Clay	≤0.7 s	Thickness of soft clay layer 3 m to 12 m	
-2	Deep Soft Clay Layer	≤ 1.4 s	Thickness of soft clay layer > 12 m.	
F	Special, e.g., Potentially	≈1 s	Holocene loose sand with high water table	
	Liquefiable Sand or Peat		$(z_w \le 6 \text{ m})$ or organic peat.	

An Empirical Site-Classification Method for Strong-Motion Stations in Japan Using H/V Response Spectral Ratio by Zhao, Irikura, Zhang, Fukushima, Somerville, Asano, Ohno, Oouchi etc..2006 BSSA Vol 96/3 (914 - 925)

ZHAO et al. (2006)

JAPAN ROAD ASSOCIATION

CAT.	PERIOD T (sec)	
SCI	T < 0.2	
SCII	0.2 <= T < 0.4	
SCIII	0.4 <= T < 0.6	
SCIV	T >= 0.6	

Four site classes defined by dominant site period, obtained from the average response spectral ratios of the horizontal and vertical components (H/V) Site Classification using horizontal-tovertical Response Spectral Ratios and its impact when deriving empirical groundmotion prediction equations by Fukushima, Bonilla, Scotti, Douglas 2007 JEE Vol 11 (712-724)

Sites are classified based on their predominant period computed using average horizontal-to-vertical (H/V) response spectral ratios

FUKU	ISHIMA et al. (2	007)	
CAT.	PERIOD T (sec)		
SC1	T < 0.2		
SC2	0.2 <= T < 0.6		SCII + SCIII
SC3	T >= 0,6		
SC4	Generic Rock		
SC5	Generic Soil		

Pitilakis, K. et al. (2003) Experimental and theoretical analyses of site effects toward the improvement of soil classification and design spectra in EC8 and Greek Seismic Code. Final Report Organization of Seismic Planning and Protection

SOI	L TEG.	DESCRIPTION	To (sec)	REMARKS
	A ₁	Healthy rock formations	<u> </u>	Vs ≥1500 m/s
А		Slightly weathered/segmented rock formations,(thickness of weathered layer < 5.0m)	-0.2	Weak layer: V _s ≥ 300 m/s Rock form.: V _s ≥ 800 m/s
	A ₂	Geologic formations which resemble to rock formations in their mechanical properties and their composition (e.g. conglomerates)	S0.2	V _s ≥ 800 m/sec
		Highly weathered rock formations whose weathered layer has a considerable thickness of 5.0 - 30.0m		Weathered layer: V _{s (1)} ≥ 300 m/s
	B ₁	Soft rock formations of great thickness or formations of similar stiffness and mechanical properties (e.g. stiff marls)		V _s = 400 - 800 m/s N _{SPT(2)} > 50 S _{u(3)} >200KPa
В		Homogeneous soil formations of very dense sand – sand gravel and/or very stiff clay, and small thickness (less than 30.0m)		V _s = 400 - 800 m/s N _{SPT} > 50 S _u >200Кра
	B ₂	Homogeneous soil formations of very dense sand – sand gravel and/or very stiff clay, and medium thickness (30.0 - 60.0m), whose mechanical properties and stiffness increase with depth	≤0.8	V _s = 400 - 800 m/s N _{SPT} > 50 S _u >200Кра
	C1	Soil formations of dense to very dense sand-sand gravel and/or stiff to very stiff clay, of great thickness (>60.0m), whose mechanical properties and strength are constant and/or increasing with depth	≤1.2	V _s = 400 - 800 m/s N _{SPT} > 50 S _u >200КРа
с	C₂	Soil formations of medium dense sand – sand gravel and/or medium stiffness clay (PI > 15, fines percentage > 30%) of medium thickness (20.0m – 60.0m)	≤1.2	V _s = 200 - 400 m/s N _{SPT} > 20 S _u >70КРа
	C₃	Category C2 soil formations of great thickness (>60.0 m), homogenous or stratified that are not interrupted by any other soil formation with a thickness of more than 5.0m and of lower strength and Vs velocity	≤1.4	V _s = 200 - 400 m/s N _{SPT} > 20 Su >70КРа
	D ₁	Recent soil deposits of substantial thickness (up to 60m), with the prevailing formations being soft clays of a high plasticity index (PI>40), with a high water content and low values of strength parameters	≤ 2.0	V _s ≤200 m/s N _{SPT} < 20 Su <70KPa
D	D ₂	Recent soil deposits of substantial thickness (up to 60m), with prevailing fairly loose sandy to sandy-silty formations with a substantial fines percentage (so as not to be considered susceptible to liquefaction)	≤2.0	V _s ≤200 m/s N _{SPT} < 20
	D3	Soil formations of category C with Vs >300m/s and great overall thickness (>60.0m), interrupted at the first 40 meters by soil layers of category D1 or D2 of a small thickness (5 – 15m),	≤ 1.2	
I	E	Surface soil formations of small thickness (5m - 20m), small strength and stiffness, likely to be classified in category C or D according to geotechnical properties, which overlie category A formations ($Vs \ge 800 \text{ m/s}$).	≤0.5	Surface soil layers: V _s = 150 - 300 m/s
	x	 Loose fine sandy-silty soils beneath the water table, susceptible to liquefaction (unless a special study proves no such danger, or it the soil's mechanical properties are improved). Soils near well documented seismically active tectonic faults. Steep slopes covered with loose lateral deposits. Loose granular or soft silty-clayey soils, provided they have been proven to be hazardous in terms of dynamic compaction or loss of strength, Recent loose landfills. Soils with a very high percentage in organic material. 		
(1), (2), (3)	mean values over the whole soil column until the bedrock.		

2. Collect a seismological and geotechnical data set of recording station

- ITACA recording stations characterized by geotechnical and geophysical information, which recorded seismic events and stations used by UNIBAS for seismic microzoning
- Calculation of parameters related to soil amplification
- Data analysis

SITO	SIGLA	lat (WGS84)	long (WGS84)	Prova geofisica	n° registrazioni
Abruzzo					
Chieti	СНТ	42.369828	14.147809	Sismica a rifrazione	21
Valle dell'Aterno	AQV	42.377222	13.343889	СН	16
Basilicata					
Brienza	BRN	40.4719444	15.634444	СН	5
Rionero in Vulture	RNR	40.927248	15.668799	СН	3
Tricarico	TRR	40.619071	16.156220	СН	3
Campania					
Auletta	ALT	40.5561070	15.394932	СН	2
Arienzo	ARN	41.0269310	14.468894	СН	5
Bagnoli Irpino	BGI	40.830860	15.068013	СН	2
Benevento	BNV	41.1170150	14.797453	СН	1
Bisaccia	BSC	41.009794	15.375982	СН	1
Calitri	CLT	40.898387	15.438577	СН	6
Garigliano	GRG	41.258311	13.832760	СН	3
Mercato San Severino	MRT	40.789459	14.762770	СН	3
Sturno	STR	41.020843	15.114993	СН	6

List of RAN station characterized by geophysical data

Emilia Romagna							
Cesena	CSN	44.137	12.24100 0	СН	1		
Forlì	FOR	44.199	12.04200 0	СН	1		
Friuli							
Buia	BUI	46.222046	13.09015 0	СН	7		
Forgaria Cornino	FRC	46.221099	12.99447 2	СН	23		
Forgaria San Rocco	SRCO	46.226376	12.99836 6	СН	8		
Majano Prato	MAP	46.187022	13.06949 9	СН	3		
Tarcento	TRC	46.226396	13.21010 2	СН	5		
Tolmezzo	TLB	46.384996	12.98168 6	СН	6		
Marche							
Ancona Palombina	ANP	43.602222 2	13.47416 7	СН	8		
Ancona Rocca	ANR	43.6211111	13.51277 8	СН	3		
Colfiorito	CLF	43.035898	12.92053 8	DH	21		
Molise							
San Giuliano di Puglia (^{A)}	SGIUA	41.684	14.68400 0 rized b	рн	eonhys	ical c	lata
San Giuliano di Puglia (B)	SGIUB	41.688	14.96300 0	DH	10		iutu
Puglia							
-			15.34220				

Toscana	Toscana							
Bagnone	BGN	44.3205556	9.990278	DH	1			
Bibbiena	BBB	43.7094444	11.825833	DH	1			
Dicomano	DCM	43.891235	11.518011	DH				
Fivizzano	FVZ	44.238247	10.131089	DH				
Piazza al Serchio	PZS	44.188549	10.288610	DH				
Pieve Santo Stefano	PVS	43.6688889	12.043889	DH				
San Casciano dei Bagni	SSC	42.874725	11.876788	DH				
San Sepolcro	SNS	43.567390	12.143375	DH				
Umbria								
Bevagna	BVG	42.932389	12.611056	СН	5			
Gubbio piana	GBP	43.313816	12.589550	DH	14			
Nocera Umbra	NCR	43.111583	12.784666	DH	25			
Norcia	NOR	42.792	13.092	DH	41			
Sellano est	SELE	42.889216	12.927975	DH	18			
Sellano ovest	SELO	42.886210	12.921806	DH	35			

List of RAN station characterized by geophysical data

Nome	Regione	# siti	Prova
Costa Gaveta	Basilicata	1	DH
Cagli	Marche	3	3 DH
Latronico scuola	Basilicata	1	
Marsico Nuovo	Basilicata	1	DH
Metaponto	Basilicata	1	DH
Offida	Marche	3	3 DH
Policoro Agrifele	Basilicata	1	DH
Policoro Municipio	Basilicata	1	DH
Scanzano Municipio	Basilicata	1	DH
Scanzano Porto Greco	Basilicata	1	DH
Senigallia Marchetti	Marche	1	
Senigallia Saline	Marche	1	DH
Senigallia Parco Pace	Marche	1	
Serra de Conti	Marche	3	3 DH
Tito Scalo	Basilicata	1	DH
Treia	Marche	3	
Tricarico	Basilicata	1	DH

Data set UNIBAS

25 sites in Marche and Basilicata Characterized by geophysical measurements and earthquake / noise records

Garigliano

Example: Garigliano

EC8 classification GRG 203

С

Garigliano: evaluation of site response

1D linear response (Haskell-Thomson)

HVSR following the project guidelines

Vs _{,30} (m/s)	Classe EC8	Vs _{,copertura} (m/s)
262.7	С	-

Example: Ancona Palombina

 $f_0 = 1 Hz$

Vs profile from ENEA

Vs _{,30}	Classe	Vs _{,54}
(m/s)	EC8	(m/s)
110.6	D	

HVSR ambient noise (S6 project)

Vs profile by Di Giulio et al. (2006)

Parameters

Vs30	Average shear wave velocity in the first 30 m		
Vs,bedrock	Average velocity to the bedrock depth		
Vs,H	Average shear wave velocity for different depth		
f0 _{hvsr}	Resonant frequency obtained for HVSR (earthquakes, microtremors)		
f0 _{1D}	Resonant frequency obtained using 1D models		
A _{hvsr}	Amplitude at f0 _{hvsr}		
A _{1D}	Amplitude at f0 _{1D}		
Lito	Lithotechnical class		

RAN station Vs profiles

RAN station Vs profiles

First 30 m

To the borehole depth

1D vs HVSR resonant frequency

Distribution of the resonant frequency for EC8 classes

Distribuzione della frequenza di risonanza in funzione della classe di suolo EC8 (da HVSR)

Distribution of the amplitudes for EC8 classes

Distribuzione dell'ampiezza corrispondente a f0 in funzione della classe di suolo EC8 (ricavati dal modello teorico 1-D).

4. Test soil classification

Analysis of the error distribution in GMPE

At the moment the soil classification used by Sabetta and Pugliese (1987) is adopted