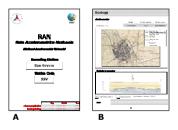

RU1 INGV MI-PV: Activities carried out in the framework of the project S4 Italian strong-motion database

Luzi L.¹, and UR1 – S4 working group


¹ Istituto Nazionale di Geofisica e Vulcanologia – Sezione di MILANO - PAVIA

ABSTRACT

The research will of Milano – Droja collaborated to all tasks of the 54 project. In advances the update of the ITAA database (http://nac.mt.inpv.tl), which consisted in the improvement of the web port in facilities and the storage of the scoreing port in the improvement of the web port in facilities and the storage of the scoreing port in the improvement of the web port in facilities and the storage of the scoreing port in the improvement of the web port in facilities and the storage of the scoreing port in the improvement of the web port in facilities and the storage of the scoreing port in the improvement of the web port in facilities and the storage of the scoreing start in the improvement of the intervent of the web port in facilities and the storage of the scoreing start in the improvement of the intervent of the storage of the scoreing start in the improvement of the web port in facilities and the storage of the scoreing start in the improvement of the storage of the scoreing start in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the web port in facilities and the storage of the score in the improvement of the storage of the score in the improvement of the storage of the score in the improvement of the storage of the score in the improvement of the storage of the sco

T2 The RU collaborated to the set up of the structure of the new ITACA monographs, thought new ITACA monographs, thought to store more information than in the previous version of the database (see POSTER S4-5). The new monographs will be automatically generated by the user, in order to match the current version of the database Moreover version of the database. Moreover, all the recording stations have been classified according to the EC8, to develop new Ground Motion Prediction Equations.

CODE	LATITUDE	LONGSTUDE .	DUANE	ALTITUDE	Yell .	HTECLASS
ACR.	39.48905900	16.37996000		767		A*
ALC	37.97444444	12,95808584		362		-A."
ALD	39.92961000	1644534900	ALBIDONA	708		A1 .
ALF	4470120000		ALPORNE	6		C.
ALT	40.00411111	11.248100000	AULETTA PETRIA)	343	A	A
AMEL	3912672600	15.07964700	AMANTEA (CAR STREE)	- 14		A*-
AMIT	43.63296000	13 29617630	AMATERCE	103		A*
ANC	43 6 20 27 778	13,95613111		82		A.
ATEN	47.0h1279002	12 8744 2000	ANNO			C**
ANF	4348222333	1347436447	ANCONA - FALOMBINA	47	C	
AJIE	42.62111313	13 8127779	ANCONA - BOOCA	40	8	
ANT	42,42401000	D.0748 MIDE	ANTRODOCO			A*
ANTI	43 58741111	13,51200954		11.1		-A*
A112	41.64972323	1243630689	OEMA	3.07		C7
APE	41.17444444	1119400514		1,218		C*
AQA :	42.3798.3000	13,33939900	CAQUEA V ATERNO - F ATERNO	8/13		8*
1.9	42.3408.3490	13.25474000	L'AQUILA-V ATERIO- FERRIZA	0.76		8*
AQG	\$2,37347400	13.33762606	L'AQUILA - V ATRINO - COLLEGRILLI	713		A*
ACS	42.34410000	13.49098000	L'AQUELA - V ATERNO - AQUELPARE I	2.28		8*
AQR.	42.344%5700	1245034305	L'AQUELA - V ATERINO - AQUEL PARE IN	725		8.
AQM	42,379643300	13.34936300	CAQUEA - V ATERNO - E MORO	734		AT.
15	42.2579.0000	1225477900	L'AQUELA - V ATERIO - M PETTERO	1,112		A+
AGTI	42,37608884	13.34555574	L'AQUELA - Y ATTENO - PONTICELLO I			P*
AGTI	\$2.37905554	13.34555554	L'AQUELA - V. ATERIED - PORTICELLO I			8*
ACT	43.37722222	12.54700000	L'AQUEA-V ATERNO-CENTROVALLE	8.92		
ASE	28.54254300	16 21142300	ARDIA (CAR INIL)	8.14		8*
ASI	41.13250000	15.09111111	APLAND REPORT	.798 .		A*
Abl.	41.0775e.000	1474242808	ABCEA	904		A*
ATTE	41.034.94444	144688888	ABIENDO	92 .		1
ABID.	43 444 30 396		AREEDO (MUOVA)	348		A ^c
AEQ	4277222233	13.25444444	ARQUATA DEL TECRITO	700		A*
AFE	41.14175200	15 (H204,20)	ARIANO BRPENO	044		8*
AET	438/472222		ARMA DI TADOLA	10.		C7 .
ASZ.	87.00404000	11.00719667	AREIDO	100		Å*
ANG	45.951810.0.3	11.47300000	ARAGO (ROANA)	174		A*
A.00	43 07416300	3240414100	A.FISIS	390		- A*

Fig.2 A) cover of the monograph; B) page containing the geologic information of the station; C) example of site classification according to the Ec8 (where Vs30 values are available the class is directly estimated, in other case it is inferred from geological, geophysical or geotechnical information.

T3 The RU collaborated to the installation of a temporary array composed of 15 velocimeters in the Norcia plain (central Italy), to study the amplification effects inside the Quaternary (basin see POSTER S4-16). A temporary array was installed by INGV Milano - Pavia across the hill of Narni (central Italy), see POSTER S4-8. Both arrays recorded the Mw 6.3 L'Aquila seismic sequence.

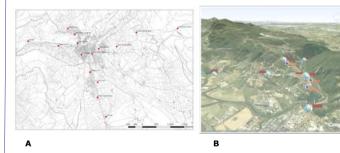
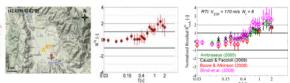
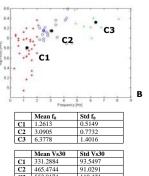
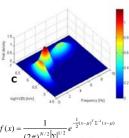


Fig.3 A) Array installed in the Norcia plain (central Italy); B) Array installed across the Narni hill (central Italy)

T4 The RU collaborated to the development of an empirical The KU collaborated to the development of an empirical procedure to identify strong motion stations of the ITACA database with seismic response features that cannot be explained by simplified classification schemes. The residuals between observation and predictions for each station are corrected for the inter-event variability. For each station the average corrected residual are evaluated in 4 representative period bands $(0.03 \le 15.5; 0.20 \le 10.405; 0.45 \le 12.5; 1.25 \le 12.0.5)$ and the residuals exceeding the threshold of 1.65 σ have been selected (see Poster S4-3). In addition a GIS-based topographic characterization of recording stations was performed (see POSTER S4-17) was performed (see POSTER S4-17)

С


Fig.4 A) Rieti plain; the station is locate on deep alluvium; B) residuals (observation – predictions) corrected for the inter-event variability; filled dots indicate the median value, while the vertical bars denote the 16° - 84° percentiles; C) sensitivity analysis performed with different Ground Motion Prediction Equations: Ambraseys et al. (2005), Cauzzi and Faccioli (2008), Boore and Atkinson (2008), Bindi et al. (2008)

ACKNOWLDGEMENTS

This research has been entirely supported by the Italian Department of Civil Protection under Project S4, Italian strong-motion database, within the DPC-INGV 2007-09 agreement.

T5 The work on site classification has been carried The work on site classification has been carried out through a statistical analysis of the recording station characterized by geological, geophysical and geotechnical data (108 stations). The significant parameters in terms of site classification have been selected (Vs over different depths, resonance frequency and amplitude, from HVSR on earthquake recordings or 1D modelling, etc.). A cluster analysis has been performed, selecting either 1, 2 or 3 variables, and the distribution of variables for each cluster has been calculated. The degree of membership to each cluster, given a set of variables, is evaluated in terms of probability density.

 $(2\pi)^{N/2} \Sigma^{1/2}$ $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_N]^T$

ona Palombina	209.2			229.4	242.7	271.8	1.0	7.1	1.2	5.6	
000	241.0							6.0	6.0	9.0	6
nali kpina	270.0										
none	299.0							10.0	7.0	5.0	- 6
rana .	206.8			360.0		413.0					
evento	494.0		529.0				4.0		4.9	3.5	
nalida Scuola	410.0										
egna .	199.0									5.0	
po Carreto CS	320.7			395.4							
eno .	179.0	209.0			343.0		4.6	3.9	4.7		
424	209.0		313.0	341.0	374.0			6.5	6.7		
	966.0	198.0	213.0	208.0	239.0	268.0	1.6	4.0	2.2	6.6	
6 Municipio	210.0	308.0	394.0	470.0	630.0	580.0	3.4	2.0	3.4	2.0	1
6 Viali del Funco	168.0	200.0	298.0	210.0	323.0	360.0	4.2	3.6			1.1
01	360.0	412.0	451.0	465.0	400.0	495.0	2.2	4.3	2.0	2.0	- 6
***	307.0	373.0	422.0	463.0	602.0	640.0	4.9	8.0	6.6	4.0	1
é di Castello	296.0	216.0	319 D	358.0	387.0	290.0	1.5	0.0	1.5	6.1	- 2
lorito	121.0	126.0	121.0	128.0	136.0	140.0	1.0	6.0	0.8	12.6	1
omano	299.0	445.0	532.0	609-0	6440	706.0			90.0	6.2	- 6
Azuria	241.0	194.0	200.0	247.0	283.0	312.0	1.4	7.0	3.1	8.3	10
rzano.	177.0	240.0	327.0	396-0	453.0	620.0	6.6	2.0	7.2	0.9	1
aaria Comino	295.0	316.0	362.0	416.0	424.0	454.0	27	6.0	3.3	4.4	- 6
	266.0	265.0	291.0	297.0	304.0	296.0	0.7	19.0	1.6		

A) subset of Fig.5 the Fig.5 A) subset of the recording stations with the associated parameters; B) cluster analysis (variables: log10(Vs30) and f0): the table show the mean and standard deviation of each variable for each cluster; C) decree of membership to degree of membership to the three classes in terms the three classes in terms normal probability density function of the 2 considered variables

A

Is the normal probability density function of N variables Is the vector of the means of the N variables **S** is the NxN covariance matrix